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@ Statistical learning with quantum annealing

@ Statistical analysis of quantum computing data
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Statistics and Optimization
MLE/M-estimation, Non-parametric smoothing, - - -

o . 1<
e Stochastic optimization problem: min L(6; Xp) = " Z 00; X;)
i=1
e Minimization solution gives an estimator or a classifier.
Examples : ¢(6; X;) = log pdf; residual square sum / loss + penalty
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e Minimization solution gives an estimator or a classifier.
Examples : ¢(6; X;) = log pdf; residual square sum / loss + penalty

Take g(0) = E[L(0; Xn)] = E[¢(0; X1)]

e Optimization problem: m@in g(0)

e Minimization solution defines a true parameter value.
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Statistics and Optimization
MLE/M-estimation, Non-parametric smoothing, - - -

« Stochastic optimization problem:  min £(6; X;) = ZE 9; X;)

e Minimization solution gives an estimator or a classifier.
Examples : ¢(6; X;) = log pdf; residual square sum / loss + penalty

Take g(0) = E[L(0; Xn)] = E[¢(0; X1)]

e Optimization problem: m@in g(0)

e Minimization solution defines a true parameter value.

Goals: Use data X,, to do the following

(i) Evaluate estimators/classifiers (minimization solutions) Computing
(i) Statistical study of estimators/classifiers — Inference
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Computer Power Demand
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Learning examples
Machine learning and compressed sensing

e Matrix completion, matrix factorization, tensor decomposition,
phase retrieval, neural network.
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Learning examples
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Learning examples
Machine learning and compressed sensing

e Matrix completion, matrix factorization, tensor decomposition,
phase retrieval, neural network.

Neural network: Layers in a chain structure
Each layer is a function of the layer preceded it.
Layer j: hj = g,-(a,-h,-_1 T b/‘), (aj, b/) = weights,

g; = activation function (sigmoid, softmax or rectifier)

History Dog vs cat

Train

ARTIFICIAL INTELLIGENCE h 'L

DEEP LEARNING
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Gradient Descent Alorithms: Solve min, g(6)
Gradient descent algorithm J

o Start at initial value xp,
Xk = Xk—1 —0V9(xk_1), ¢ = learning rate, V = derivative operator
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Gradient Descent Alorithms: Solve min, g(6)
Gradient descent algorithm
o Start at initial value xp,
Xk = Xk—1 —0V9(xk_1), ¢ = learning rate, V = derivative operator

Accelerated Gradient descent algorithm (Nesterov)
e Start at initial values xo and yp = Xo,
Xk = Yk—1—0VI(Vk-1), Yk =Xk +

k+2(Xk — Xk_1)
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Gradient Descent Alorithms: Solve min, g(6)
Gradient descent algorithm

o Start at initial value xp,
Xk = Xk—1 —0VQ(Xxk_1), 6 = learning rate, V = derivative operator |

Continuous curve X; to approximate discrete {xx : k > 0}

Differential equation: X; + Vg(X¢) =0, X; = derivative = %

Accelerated Gradient descent algorithm (Nesterov)

e Start at initial values xo and yp = Xo,
Xk = Yk-1 —0VI(Vk-1); Yk =Xk +

k+2

(Xk — Xk—1)
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Gradient Descent Alorithms: Solve min, g(6)
Gradient descent algorithm

o Start at initial value xp,
Xk = Xk—1 —0VQ(Xxk_1), 6 = learning rate, V = derivative operator |

Continuous curve X; to approximate discrete {xx : k > 0}

Differential equation: X; + Vg(X;) = 0, X; = derivative = % ,
Accelerated Gradient descent algorithm (Nesterov)
e Start at initial values xo and yp = Xo, 1
Xk = Ykt =OV9(Wi1)y Vi =X+ T 5 (X = Xi—1) J
Continuous curve X; to approximate discrete {xx : k > 0}
Differential equation: X; + %Xt +Vg(X;) =0, X = % )
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Gradient Descent Alorithms: Solve min, g(6)
Gradient descent algorithm

o Start at initial value xp,
Xk = Xk—1 —0VQ(Xxk_1), 6 = learning rate, V = derivative operator |

Continuous curve X; to approximate discrete {xx : k > 0}

Differential equation: X; + Vg(X¢) =0, X; = derivative = %

Convergence to the minimization solution at rate= 1/k or 1/t (1)

as t, k — oo. For the ccelerated case: Rate = 1/k? or 1/t2(])

Accelerated Gradient descent algorithm (Nesterov)

e Start at initial values xo and yp = Xo, K 1

X = Y1 = OVGWk-1), Vi =X+ T 5 (Xk = Xie—1) |
Continuous curve X; to approximate discrete {xx : k > 0}
. . . 2
Differential equation: X; + %Xt +Vg(Xt) =0, X; = %
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Stochastic Gradient Descent
Stochastic optimization: ming £(0; X,), X, = (X1, , Xp)
e Gradient descent algorithm to compute x, iteratively

Xk = Xk_1 — OV L(Xk_1;Xn), VL(O; Xp) = Zve(a X;)
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Stochastic Gradient Descent
Stochastic optimization: ming £(0; X,), X, = (X1, , Xp)
e Gradient descent algorithm to compute x, iteratively

Xk = Xk_1 — OV L(Xk_1;Xn), VL(O; Xp) = ZVE(G X;)

BigData: expensive to evaluate all V/(¢; X;) at each iteration
e Replace VL(0; X,) by
VL™(0; X5, Zwex* m<n

=(X{,- , Xp)= subsample of X, (minibatch or bootstrap sample).
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Stochastic Gradient Descent
Stochastic optimization: ming £(0; X,), X, = (X1, -+, Xp)
e Gradient descent algorithm to compute x, iteratively

Xk = Xk_1 — OV L(Xk_1;Xn), VL(O; Xp) = ZW(G X;)

BigData: expensive to evaluate all V/(¢; X;) at each iteration
e Replace VL(0; X,) by
VL™(0; X5, Zwex* m<n

=(X{,- , Xp)= subsample of X, (minibatch or bootstrap sample).

Stochastic gradient descent algorithm
X = Xe_q — OVL (X1 Xi)
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Stochastic Gradient Descent
Stochastic optimization: ming £(0; X,), X, = (X1, -+, Xp)
e Gradient descent algorithm to compute x, iteratively

Xk = Xk_1 — OV L(Xk_1;Xn), VL(O; Xp) = Zve(a X;)

BigData: expensive to evaluate all V/(¢; X;) at each iteration
e Replace VL(0; X,) by
VL™(0; X5, Zwex* m<n

=(X{,- , Xp)= subsample of X, (minibatch or bootstrap sample).

Stochastic gradient descent algorithm

X = Xe_q — OVL (X1 Xi)
Continuous curve X;* to approximate discrete {x; : k > 0}
X; obeys stochastic differential equation.

4
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Gradient Descent vs Stochastic Gradient Descent
Gradient Descent
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Gradient Descent vs Stochastic Gradient Descent
Gradient Descent

Stochastic gradient descent
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Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model
Stochastic differential equation:
axX; +vVo(X{)dt+ o(X;)dW; =0
W: = Brownian motion

For the accelerated case:

2nd order stochastic differential
equation
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and their asymptotic distribution

as m, n — oo via stochastic
differential equations
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Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model
Stochastic differential equation:
axX; +vVo(X{)dt+ o(X;)dW; =0
W: = Brownian motion

For the accelerated case:

2nd order stochastic differential
equation

v

and their asymptotic distribution

as m, n — oo via stochastic
differential equations

Example X; = (U;, V), i=1,--- ,n= 10000
Vi = U +¢j, U~ i.i.dbivariateN(0,X),e; ~ i.i.d.N(0,7?)
06; X)) = (V; — Uif)?, m = 200, true § = (0, 0).
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Statistical Analysis of Gradient Descent (Wang, 2017)

Continuous curve model
Stochastic differential equation:
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Deep Learning
Boltzmann Machine (BM) on graph G

= (V7 5)
) P(s) = w, Z =Y exd—E(s)]

Z Wisis; — Zb,s,, s =(s1, -

(i.j)e€ iey

. Energy

0 7S|V|) € {—1,1}|V|
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Deep Learning
Boltzmann Machine (BM) on graph G = (V, )

) P(s) = w, Z =Y exd—E(s)]

. Energy
— > Wsisi— > bis;, s=(s1,--,8y) € {—1,1}
(i.j)e€ iey )
Take s = (v, h)
v = (vq,---,Vp): visible nodes (observed variables)
h=(hy,---, hp): hidden nodes (latent variables).

Boltzmann distribution models data v:

P(v) = P(v,h)
h
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Deep Learning
Boltzmann Machine (BM) on graph G = (V, )

P(s) = w, Z=> exg—E(s)]

. Energy
— > Wsisi— > bis;, s=(s1,--,8y) € {—1,1}
(i,)e€ ey )
Take s = (v, h)
v = (vq,---,Vp): visible nodes (observed variables)
h=(hy,---, hp): hidden nodes (latent variables).

Boltzmann distribution models data v:

P(v) = P(v,h)
h

Learning
Use training data v to learn model parameters W; & b;.
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Restricted Boltzmann Machine (RBM)

Bipartite undirected graph G
Connections between hidden layer

and visible layer
but not within each layer
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Restricted Boltzmann Machine (RBM)

Bipartite undirected graph G

Connections between hidden layer
and visible layer
but not within each layer

Model
Variables in visible layer:
V:(V1,"' 7Vn),
Variables in hidden layer:
h= (h‘lv"' 7hm)
P(v, h) = exp{—E(v,h)}/Z
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Restricted Boltzmann Machine (RBM)

Bipartite undirected graph G

Connections between hidden layer
and visible layer
but not within each layer

Model
Variables in visible layer:
V:(V1,"' 7Vn),
Variables in hidden layer:
h= (h17"' 7hm)
P(v, h) = exp{—E(v,h)}/Z

n

m n m
E(V,h)=—ZZWijVihj_ZbiVi_Zthf J
i=1 j=1

i=1 j=1
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Deep Neural Network: Restricted Boltzmann Machine
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Deep Neural Network: Restricted Boltzmann Machine
Conditional independence within each layer given the others

P(hiv) =TT P(hlv). P(vih) = T] P(vilh)
j=1 i=1
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Deep Neural Network: Restricted Boltzmann Machine
Conditional independence within each layer given the others

P(hiv) =TT P(hlv). P(vih) = T] P(vilh)
j=1 i=1

Sigmoid activation function for forward and backward conditional
probabilities: sigmoid(x) = 1/[1 + e™*]

n
P(h; = 1|v) = sigmoid (Z wiV; + c,-)

i=1

j=1

n
P(v; = 1|h) = sigmoid (Z wjh; + bi)
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Deep Learning

Gradient ascent/descent to compute model parameters wj;, b; and ¢;.
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Deep Learning

Gradient ascent/descent to compute model parameters wj;, b; and ¢;.

Parameter updates with learning rate n

Wt Olog P
’j W’] o " 8W,j
(1) _ pt o 8|09 P 1y _ +,  OlogP
b; =b; + 8b,- G =C +1 a6,
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Deep Learning

Gradient ascent/descent to compute model parameters wj;, b; and ¢;.
Gradient Y

og

ow; (Vi) data — (Vi model

dlog P dlog P
ab; {Vi)data — (Vi)model- Tog (M) data — (M) model

e (Vihj)qata: the clamped expectation with v fixed

Bottleneck : <V,‘hj>m0de| = Z V,‘th(V, h)
v,h

Parameter updates with learning rate n
Wit _ dlog P
’j W’] o " aw,/
(tH1) _ ot 3|09 P (t+1) t dlog P
b = b; + b, c =C +n oG,
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Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

—Hisi T H..
P(s) = ol l;:g(s)/ ],ZT = Zexp{—ls’”—;’(s)] , T =temperature
S
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Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

—H,., T Hie:
P(s) = ol H/;,:g(s)/ ],ZT = Zexp{—ls’”—ﬁ(s)] , T =temperature
S

v

Simulated annealing: Thermal Fluctuation
Slowly lower the temperature to reduce the escape probability of
trapping in local minima,

) 1 1
Annealing schedule : T; « e or log(i = 1)

v
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Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler
Sample from Boltzmann distribution

] , T =temperature

P(s) = exp[—H,;,-:g(s)/T] Zr— Zexp[— Hlsil;g_;(s)

v

Simulated annealing: Thermal Fluctuation
Slowly lower the temperature to reduce the escape probability of
trapping in local minima,

Annealing schedule : T; « ; ! 1

+1 or log(i + 1)

v

BigData
Issues: not easy for parallel computing; very hard to scale-up!

Yazhen (at UW-Madison) 14/40



Quantum Annealing (QA): Basic Idea

Classical optimization: Min{Hsing(s) : 8 € {—1,1}"}
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Quantum Annealing (QA): Basic Idea
Classical optimization: Min{Hsing(s) : 8 € {—1,1}"} J

Find a target quantum system with Hamiltonian H(1) whose
energies match Hising(s): H(1) = diag{Hising(S1,) - - , Hising(S2n)}- J
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Find a target quantum system with Hamiltonian H(1) whose
energies match Hising(s): H(1) = diag{Hising(S1,) - - , Hising(S2n)}-

Create an initial quantum system with Hamiltonian H(0)
whose lowest energy state is known and easy to prepare. J
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Quantum Annealing (QA): Basic Idea
Classical optimization: Min{Hsing(s) : 8 € {—1,1}"} J

Find a target quantum system with Hamiltonian H(1) whose
energies match Hising(s): H(1) = diag{Hising(S1,) - - , Hising(S2n)}-

Create an initial quantum system with Hamiltonian H(0)
whose lowest energy state is known and easy to prepare.

v

QA: Engineer H(0) in its lowest energy state and gradually move
H(0) — H(1)

—
W\/\/

~HO) H(1)
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Simulated Quantum Annealing (SQA)

Spin glass in transverse field
H = A(t)Hx + B(t)Hising, two parts non-commuting
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Simulated Quantum Annealing (SQA)

Spin glass in transverse field
H = A(t)Hx + B(t)Hising, two parts non-commuting J

Path integral representation via Suzuki-Trotter expansion
H ~ H,, 1 = classical (2+1)-dimensional anisotropic Ising system J
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Simulated Quantum Annealing (SQA)

Spin glass in transverse field
H = A(t)Hx + B(t)Hising, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion
H ~ H,, 1 = classical (2+1)-dimensional anisotropic Ising system

(2 + 1)-dimensional system

Two directions: along the original 2-dimensional direction spins have

Chimera graph couplings, and along the extra (imaginary-time)
direction spins have uniform couplings
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Simulated Quantum Annealing (SQA)

Spin glass in transverse field
H = A(t)Hx + B(t)Hising, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion
H ~ H,, 1 = classical (2+1)-dimensional anisotropic Ising system

(2 + 1)-dimensional system

Two directions: along the original 2-dimensional direction spins have
Chimera graph couplings, and along the extra (imaginary-time)
direction spins have uniform couplings

Quantum Monte Carlo A B c

H,_1: a collection of 2-dimensional A
classical Ising systems, that can be v" e
simulated by MCMC with moves in H *”
both directions T p——" —r"
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SSSV Annealing Model

Magnet i points in direction with angle 0; w.r.t. Z-axis in the xz plane
an external magnetic field with intensity A(t) pointing in the X-axis,

Hamiltonian, J; = coupling of magnets 6; and 6,

N
H(t) = —A()) _sin6;— B(t) > J;jcosb;coso

i=1 1<i<j<N
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SSSV Annealing Model

Magnet i points in direction with angle 6; w.r.t. Z-axis in the xz plane,
an external magnetic field with intensity A(t) pointing in the X-axis,
Hamiltonian, J; = coupling of magnets 6; and 6,

N
H(t) = —A()) _sin6;— B(t) > J;jcosb;coso

i=1 1<i<j<N

The model can be simulated by the Metropolis algorithm with
temperature T = 0.22, and initial condition 0; = 7 /2
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SSSV Annealing Model

Magnet i points in direction with angle 6; w.r.t. Z-axis in the xz plane,
an external magnetic field with intensity A(t) pointing in the X-axis,

Hamiltonian, J; = coupling of magnets 6; and 6,

N
H(t) = —A()) _sin6;— B(t) > J;jcosb;coso
i=

1<i<j<N

The model can be simulated by the Metropolis algorithm with
temperature T = 0.22, and initial condition 0; = 7 /2

Interpretation: angle 6; as state [1)(=+1) or state ||)(= -1)
according to the sign of cos(6;) (its projection on Z direction).
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SSSV Annealing Model

Magnet i points in direction with angle 6; w.r.t. Z-axis in the xz plane,
an external magnetic field with intensity A(t) pointing in the X-axis,

Hamiltonian, J; = coupling of magnets 6; and 6,

N
H(t) = —A()) _sin6;— B(t) > J;jcosb;coso
i=

1<i<j<N

The model can be simulated by the Metropolis algorithm with
temperature T = 0.22, and initial condition 0; = 7 /2

Interpretation: angle 6; as state [1)(=+1) or state ||)(= -1)
according to the sign of cos(6;) (its projection on Z direction).

Use the converted states to evaluate Hgjng(s) and find its minimizer J
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DW Signal vs Background Noise
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Correlation of Ground State Success Probability Data
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Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let pg,m be DW
success frequency out of m repetitions and G;rm, £ = 1,2, 3, the
success frequencies for SA, SQA & SSSV
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Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let pg,m be DW
success frequency out of m repetitions and G;rm, £ = 1,2, 3, the
success frequencies for SA, SQA & SSSV
Hor : Porcc = Qeree VS Har * Poroc # Qerco
T = - mA(lAJr —Aaﬁ,r)z _
pr(1 = pr) + Ge.r(1 = Geyr)
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Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let pg,m be DW
success frequency out of m repetitions and G;rm, £ = 1,2, 3, the
success frequencies for SA, SQA & SSSV

Hor : Porco = Qerco VS Har @ Porse 7 Qeroo
T _ m(pr — Ele,r)z
re — = ~ ~ ~
pr(1 = pr) + Ge.r(1 — Qer)

o =2m [arcsin (\/E) — arcsin (\/a)r

Asymptotic distribution under Hy,
As m,n — o, if logn/m — 0, then

T — X3, T;, — x% uniformlyoverr=1,---.n
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Multiple Statistical Tests

For the r-th instance, repeat m times of annealing, let pg,m be DW
success frequency out of m repetitions and G;rm, £ = 1,2, 3, the
success frequencies for SA, SQA & SSSV
Hor : Porcc = Qeree VS Har * Poroc # Qerco
ro_ mbr-a)
pr(1 = pr) + Ger(1 — Qo)

o =2m [arcsin (\/E) — arcsin (@)r

Asymptotic distribution under Hy,
As m,n — o, if logn/m — 0, then

T — X3, T;, — x% uniformlyoverr=1,---.n

p-values & FDR

Hor vs Har @ p-value = P(x3 > T;;) p-value = P(x2 > T},)
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Goodness-of-fit test

Ho : Porecc = Qurso fOr aII 1<r<nvsH;:pore # quoo for some r
=(2n)" 1/22(T,g -n) U=
r=1

(2n)~1/2 Z(T,g—n)
r=1
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Goodness-of-fit test

Ho : Porso = Qureo forall 1 < r < nvs Hy : Porsc # Qere for some r
n n

U= @2n) 23 (T —n) U;=(2n) "2 (T —n)

r=1 r=1

Asymptotic distribution under Hy as m,n — oo
Uy — N(0,1) U; — N(0,1)

Conditions
(1) v/n/m — 0.

(2) poreo = Qeroo=true success probability for method ¢ with the r-th
instance are bounded away from 0 and 1.
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U= @2n) 23 (T —n) U;=(2n) "2 (T —n)

r=1 r=1

Asymptotic distribution under Hy as m,n — oo
Uy — N(0,1) U; — N(0,1)

p-value = 2[1 — ®(|U,|)] p-value = 2[1 — (|U;])]

Conditions
(1) v/n/m — 0.

(2) poreo = Qeroo=true success probability for method ¢ with the r-th
instance are bounded away from 0 and 1.
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Goodness-of-fit-test
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Goodness-of-fit-test

SQA vs DW

p-values = 0
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Goodness-of-fit-test

SQA vs DW

p-values = 0

SSSV vs DW

p-values = 0
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Goodness-of-fit-test

SA vs DW
p-values = 0
SQA vs DW SSSV vs DW
p-values = 0 p-values = 0
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Goodness-of-fit-test

Reject null hypothesis
all p-values < 3.87 x 10~

SA vs DW
p-values = 0
o

SQA vs DW
p-values = 0

SSSV vs DW
) p-values = 0
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Goodness-of-fit-test

Reject null hypothesis SA vs DW

all p-values < 3.87 x 10~  pvalues =0 J
SQA vs DW SSSV vs DW

p-values = 0 p-values = 0 J

Conclusion: Overwhelming rejection
Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability
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Histogram of Ground State Success Probability Data

(a) DW (b) SA
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SA Histograms for different annealing times

(a) SA with 100 sweeps (b) SA with 1000 sweeps
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SQA Histograms

Various annealing times

() SQA with 3000 sweeps. (b) SQA with 5000 sweeps
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SQA Histograms

Various annealing times
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SSSV Histograms

Various annealing times

(a) SSSV with 5000 sweeps (b) SSSV with 75000 sweeps
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SSSV Histograms

Various annealing times Various temperatures

(a) SSSV with 5000 sweeps (b) SSSV with 75000 sweeps (QESIETH (GVEESVtc2
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DIP Test for Shape Patterns
DIP(Fn) = max |Fn(p) - Fa(p)]
<p<i

Fn,=empirical DF, F,= DF estimator under unimodality or U-shape
Under uniform null (asymptotic least favorable) distribution, as n — oo,
v/nDIP(F,) — DIP(B), B(t) = Brownian bridge on [0, 1]

Yazhen (at UW-Madison) 34/40



DIP Test for Shape Patterns

DIP(Fn) = max |Fa(p) = Fa(p)|
Fn,=empirical DF, F,=DF estimator under unimodality or U-shape
Under uniform null (asymptotic least favorable) distribution, as n — oo,
v/nDIP(F,) — DIP(B), B(t) = Brownian bridge on [0, 1]
Unimodality (including monotone)

DW: no SA: yes

SQA: no SSSV: no

o
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DIP Test for Shape Patterns
DIP(Fn) = max |Fn(p) - Fa(p)]
<p<i

Fn,=empirical DF, F,= DF estimator under unimodality or U-shape
Under uniform null (asymptotic least favorable) distribution, as n — oo,
v/nDIP(F,) — DIP(B), B(t) = Brownian bridge on [0, 1]

Unimodality (including monotone) J
DW: no SA: yes

SQA: no A SSSV: no

U-shape J
DW: no SA: no

SQA: yes ‘ SSSV: yes

o
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Histogram of Success Probability

(a) DW (b) SA
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Histogram of Success Probability

(a) DW (b) SA
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Shape Pattern Analysis by Regression

Covariates
Energy gap & Hamming distance

between ground state and 1st

excited state
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Shape Pattern Analysis by Regression

SQA

(d) SQA
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Shape Pattern Analysis by Regression
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Shape Pattern Analysis by Regression
SQA

SA
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Shape Pattern Analysis by Regression
SQA

'SQA with Hammming distance less than 5 'SQA with Hammming distance at least 5
g
g g
g
§° ]
g £
L] fs
. g
- -
— —
00 o0z o4 o0s 08 10 00 02 o4 05 08 10
Success Probabity Success Probabiy

Yazhen (at UW-Madison)



Shape Pattern Analysis by Regression
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Shape Pattern Analysis by Regression
SQA SA
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Concluding Remarks

Both inference and computing are inportant for big data.
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Concluding Remarks

Both inference and computing are inportant for big data.

Interface
e Computing for conducting statistical inference; and statistics for
analyzing computational algorithms.

e Statistics for quantum technology (e.g. quantum computing &
tomography), and quantum computing for statistical computing
and machine learning.
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